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Abstract

The early incorporation of exposure assessment can be invaluable to help design, prioritize, and 

interpret toxicological studies or outcomes. The sum total of the exposure assessment findings 

combined with preliminary toxicology results allows for exposure-informed toxicological study 

design and the findings can then be integrated, together with available epidemiologic data, to 

provide health effect relevance. With regard to engineered nanomaterial inhalation toxicology in 

particular, a single type of material (e.g. carbon nanotube, graphene) can have a vast array of 

physicochemical characteristics resulting in the potential for varying toxicities. To compound the 

matter, the methodologies necessary to establish a material adequate for in vivo exposure testing 

raises questions on the applicability of the outcomes. From insights gained from evaluating carbon 

nanotubes, we recommend the following integrated approach involving exposure-informed hazard 

assessment and hazard-informed exposure assessment especially for materials as diverse as 

engineered nanomaterials: 1) market-informed identification of potential hazards and potentially 

exposed populations, 2) initial toxicity screening to drive prioritized assessments of exposure, 3) 

development of exposure assessment-informed chronic and sub-chronic in vivo studies, and 4) 

conduct of exposure- and hazard-informed epidemiological studies.
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1. Introduction

As formulated in the National Academy of Sciences/National Research Council for risk 

assessment/risk management (NRC, 1983, 2009), risk assessment itself has four integral 

parts including hazard identification, dose-response assessment, and exposure assessment 

that lead to risk characterization. In schematic representations of the paradigm, the dose-

response and exposure assessments contribute to the risk characterization but are oftentimes 

treated independently. For well-defined xenobiotics this would seem adequate, but with 

regard to the complexity of the physicochemical characteristics of engineered nanomaterials, 

an integration between exposure and toxicological assessments is a necessity. An early 

review of nanotoxicology as an emerging discipline indicated that exposure assessment 

could be informative for dose-response assessments (Oberdorster, Oberdorster, & 

Oberdorster, 2005).

2. Risk and exposure assessments

2.1. Knowledge-of-exposure and knowledge-of-hazard influence the relevance and 
reliability of risk assessments

Risk, in reference to particle toxicology, is an evaluation of the relative hazard of a material 

taking into account the exposure, or more specifically, the delivered dose. If little to no 

knowledge exists for the hazard and exposure then the risk will be poorly understood. 

Having only thorough knowledge of the hazard without any exposure data will also limit the 

interpretation of the findings. Conversely, knowing all facets of the exposure with little 

hazard information provides no indication of the risk. Once both detailed exposure 

assessments are performed in association with properly designed and executed toxicological 

evaluations using relevant exposure metrics then assessments of risk are likely to be valid 

(Fig. 1). An additional need is for an understanding of the factors involved in transferring 

risk observed from animal toxicology studies to human exposures and health effects 

(NIOSH, 2013). Ideally, epidemiologic studies would be available as a source of hazard 

identification or dose-response information, or to corroborate risk projections from 

toxicology and exposure assessment studies and to serve, potentially, as an additional data 

source for risk assessment (Vermeulen et al., 2014).

2.2. A framework to integrate exposure and toxicity assessments for engineered 
nanomaterials

In the adaptive risk assessment paradigm, risk characterization arises from hazard 

identification and subsequent dose-response assessments as well as exposure assessments. 

With regard to engineered nanomaterial inhalation toxicology, a single type of material (e.g. 

carbon nanotube, graphene) can have a vast array of physicochemical characteristics 

resulting in the potential for varying toxicities. To compound the matter, the methodologies 

necessary to establish a material adequate for in vivo exposure testing raises questions on the 

applicability of the outcomes. The early incorporation of exposure assessment can be 

invaluable to help design, prioritize, and interpret toxicological studies or outcomes (Fig. 2). 

Initially there needs to be an identification and prioritization of hazards and exposed 

populations (Schubauer-Berigan, Dahm, & Yencken, 2011). The decision should be market-
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informed with a reasonable anticipation of potential toxicity. Toxicity screening then drives 

prioritized assessments of exposure. The exposure assessments provide information about 

routes of exposure, levels of exposure, and material characteristics. When feasible, there 

should be congruence among exposure metrics being used, or reasonable extrapolations 

from the workplace to toxicology studies may be unreliable. While surface area of particles 

has significant relevance when considering toxicological outcomes, particularly for 

engineered nanomaterials, there is no reliable way to measure this metric in the workplace 

for materials such as carbon nanotubes (Dahm, Evans, Schubauer-Berigan, Birch, & 

Deddens, 2013). In addition, a recent study of various graphite nanoplates showed an inverse 

relationship between surface area and toxicity.

To make informed interpretations between toxicological and exposure assessments the 

evaluation of the toxicant should be categorically representative. This is important for 

engineered nanomaterials that may have varying levels of toxicity within a single class of 

material. For example, a particular multi-walled carbon nanotube (MWCNT), Mitsui-7 or 

MWCNT-7, has a count mean width of 49 nm for individual fibers (Porter et al., 2010) and 

during inhalation exposures has a count median width of 100.3 nm and a count median 

length of 3.04 μm during inhalation exposure (Chen et al., 2012). MWCNT-7 causes 

fibrosis, promotes lung tumorigenesis, and translocates to the pleural cavity and 

extrathoracic organs following an inhalation exposure designed to administer a nearly 100% 

respirable fraction (Chen et al., 2012; Grosse et al., 2014; Mercer, Scabilloni, Hubbs, Battelli 

et al., 2013; Mercer, Scabilloni, Hubbs, Wang, et al., 2013; Sargent et al., 2014). Conversely, 

exposure assessment studies have indicated that MWCNT used in U.S. facilities are more 

often smaller in diameter, resulting in significantly more nanotube agglomeration, which 

should decrease the likelihood of extrathoracic translocation (Dahm, Evans, Schubauer-

Berigan, Birch, & Fernback, 2012; Dahm et al., 2015). These factors may create different 

outcomes than described for MWCNT-7 and perhaps alter the risk characterization.

There is no clear answer on the exposure assessment side for how many evaluations would 

be representative of a single industry but caution should be used when designing 

toxicological studies or interpreting findings to human health relevance based on one or two 

observations. For example, personal breathing zone measurements for a facility 

manufacturing carbon nanofibers (CNF) had exposures of 45 and 80 μg/m3 of elemental 

carbon in the respirable size range (Birch, Ku, Evans, & Ruda-Eberenz, 2011). However, in 

a recently published study by Dahm et al. (2015) the authors found inhalable CNF personal 

breathing zone exposures of 4.2 and 7.5 μg/m3 of elemental carbon at a downstream 

manufacturing facility. Exposures at the respirable size fraction were not collected in this 

instance, but it can be assumed that respirable portion would only comprise a small 

percentage of the exposure based on transmission electron microscopy (TEM) and dustiness 

data (Dahm et al., 2015; Erdely et al., 2013; Evans, Turkevich, Roettgers, Deye, & Baron, 

2013). Since these are the only two CNF facilities where mass based measurements of 

elemental carbon has been collected, it is still relatively unclear whether these measurements 

are representative of the industry or just these particular facilities. Much more information is 

becoming available about exposure levels for single-walled (SW) CNT and MWCNT, with a 

conclusion being reached that exposures are generally low outside of powder-handling tasks 

(Dahm et al., 2015).
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The sum total of the exposure assessment findings combined with preliminary toxicology 

results allows for exposure-informed toxicological study design and the findings can then be 

integrated, together with available epidemiologic data, to provide health effect relevance. 

While the reality of toxicological science for engineered nanomaterials may have in vivo and 

in vitro studies proceeding without any exposure assessment guidance, every effort should 

be made to push for detailed exposure assessment to provide timely context to the 

toxicology studies.

3. Insights from the carbon nanotube experience

3.1. Initial market projections and toxicity studies

Unprecedented global investment in innovative nanoscale science and engineering has led to 

the production and utilization of novel materials in expanding fields of electronics, 

medicine, and composites. However, health and environmental implications of these new 

critical nanomaterials have raised serious issues. Engineered nanomaterials, such as carbon 

nanotubes (CNT), have caused toxicity in experimental models. Generally, limited data 

exists for human exposures (Liou, Tsai, Pelclova, Schubauer-Berigan, & Schulte, 2015), the 

physicochemical properties most prevalent in exposure scenarios, and health outcomes. 

These deficiencies make interpretation of experimental findings to human relevance difficult.

Early projections had CNT production becoming a multi-billion dollar industry suggesting 

the potential for exposure risk. The projections implied the workforce handling CNT would 

rapidly expand and the CNT market would reach the everyday consumer in the very near 

future. This expected growth led increased in vivo and in vitro toxicology assessment of 

CNT world-wide. The initial in vivo studies evaluating the toxicity of SWCNT clearly 

showed pulmonary toxicity that included inflammation and rapid onset fibrosis following 

exposure (Lam, James, McCluskey, & Hunter, 2004; Mangum et al., 2006; Shvedova et al., 

2005; Warheit et al., 2004). Additional studies on the more market prevalent MWCNT found 

similar results (Ma-Hock et al., 2009; Pauluhn, 2010). These findings were consistent with 

the mode of action for biopersistent fibrous shaped particles. Additional studies provide 

evidence of adverse extrathoracic effects following pulmonary exposure, including 

cardiovascular and immunological responses as well as translocation (Erdely et al., 2009; Li 

et al., 2007; Mercer, Scabilloni, Hubbs, Wang, et al., 2013; Mitchell, Lauer, Burchiel, & 

McDonald, 2009). While early CNT studies clearly illustrated a hazard, there was 

incomplete extrapolation to relevant human health effects. Furthermore, materials 

prominently tested in early studies (e.g., MWCNT-7) were of unknown relevance to actual 

market use. This was not a fault of these studies but an illustration of the lack of data from 

detailed workplace exposure assessments. To date, thousands of articles have been published 

concerning CNT (includes toxicology and application), but very few examine human 

exposure scenarios and health effects.

3.2. Field assessments

The adverse outcomes of the initial toxicology studies combined with market projections 

created the need to assess exposures and the feasibility of human health effect studies 

(Schubauer-Berigan et al., 2011). Initial exposure assessment studies relied on gravimetric 
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area measurements, extrapolations from catalyst, and short duration worst case scenario 

measurements (Erdely et al., 2013). These early exposure assessment studies on CNT 

provided some useful insight while also highlighting needs for future more detailed studies. 

More recent workplace exposure assessments, such as the work by Dahm et al. (2012, 2015), 

provided significant impact for toxicological assessments. Five critical areas of exposure 

assessment became apparent when extrapolating relevance to experimental studies of CNT 

toxicity: 1) What is the level of exposure with health relevant size fractions? 2) What are the 

physicochemical characteristics of the material with the potential for exposure (e.g. CNT are 

mostly agglomerated in human exposure settings)? 3) What are the most common brands 

and types of CNT being utilized in industry, including secondary manipulations of CNT 

such as surface coatings or functionalization? 4) What is the area of future interest with 

potential large scale applications and other downstream uses? and 5) How long is the 

average cumulative exposure of the workforce handling CNT? Recent elucidation of these 

critical areas greatly contributes to the overall interpretation of already published toxicology 

studies, while contributing to future toxicological and epidemiological study design and 

predictions of human health risks.

3.3. Bridging the gap between exposure assessment and inhalation toxicology

Evaluation of background-corrected elemental carbon from all personal breathing zone 

(PBZ) collections from 8 MWCNT facilities found an average inhalable concentration of 

10.6 μg/m3 (arithmetic mean). The field measurements also contributed to an estimated mass 

median aerodynamic diameter derived from the respirable to inhalable ratio that was used to 

predict an alveolar deposition fraction. These measures allowed for a prediction of 

toxicological effects with regard to average exposures seen in the workplace. Following 

MWCNT inhalation, general effects were evident up to 28 days post-exposure at a 

deposition with estimated human equivalence of 7.6 years at 10.6 μg/m3 (Erdely et al., 

2013). The utility of our extrapolations were supported by a recent study exploring human 

health effects from a single facility in Korea (Lee et al., 2015). Lee et al. (2015) indicated 

increased markers of oxidative stress from exhaled breath condensate from workers with an 

average personal sampling of elemental carbon at 8.34 μg/m3 and an average of 4 years of 

exposure. These results were in very close agreement with our extrapolations (Erdely et al., 

2013) and showed the immense utility of combining detailed exposure assessment with 

ongoing in vivo toxicology studies, together with available epidemiologic data, to make a 

reasonable conclusion concerning human relevance.

Our extrapolations (Erdely et al., 2013) and supporting confirmation in a single facility 

human study (Lee et al., 2015) provided a dosing regimen for screening similar 

manufacturing-relevant carbon-based nanomaterials. A screening process representing 

facility-relevant exposures (4 μg deposition) and a high dose which confers pathology (40 μg 

deposition), have been utilized by ongoing nanomaterial studies (e.g. CNT, CNF, graphite 

nanoplates) to evaluate relative potency between and within classes. The premise is very 

similar to that proposed by Landsiedel et al. for using short term inhalation studies (5 day) as 

an early tier screen for nanomaterial potency (Landsiedel et al., 2014). In many cases 

inhalation is simply not feasible and instillation studies may be necessary, but the overall 
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premise of screening materials with standardized outcomes is an extremely valuable first 

step.

Exposure assessment studies (Dahm et al., 2012, 2015) and accompanying human health 

effects studies (Lee et al., 2015; Schubauer-Berigan et al., 2011) provided insight into types 

of CNT utilized by industry as well as the downstream applications and products containing 

these materials. These studies provided data on specific preference of materials, level of 

exposure, years handling a given material, and future direction of the market. Material 

selection for new toxicity testing is facilitated by this life cycle knowledge of particles with 

regard to surface coating or functionalization followed by product incorporation.

Exposure assessments with personal breathing zone measures also provided representation 

of the morphology of the CNT exposure. Recent studies show the majority of the CNT 

exposure is in the inhalable or thoracic size range (i.e., aerodynamic diameter less than about 

100 μm) rather than the respirable size range (i.e., aerodynamic diameter less than about 10 

μm). This was shown for both elemental carbon mass and by TEM (Dahm et al., 2012, 2015; 

Erdely et al., 2013). These field findings can guide in vivo exposures so that a generated 

aerosol or instillate reflects workforce or consumer exposures. This is crucial for 

intratracheal instillation or oropharyngeal aspiration studies. Altering the physicochemical 

characteristics of nanomaterials often influences toxicity, complicating data interpretation. 

This may be further confounded when determining potency for similar classes of materials 

that respond differently to the same dispersion method or a single material with varying 

toxicity depending on the dispersion method (Baisch et al., 2014; Sager et al., 2015). In 

ongoing studies, TEM images from personal breathing zone collections of CNT or CNF 

exposed workers (Dahm et al., 2012, 2015) were compared to TEM images of the same 

material dispersed for ongoing in vivo studies to ensure relevance of the in vivo exposures. 

While the differences in size of the rodent and human respiratory tract must be considered, 

the goal should be to expose rodents to particles with characteristics relevant to human 

exposures. Therefore, extraordinary measures to disperse particles may not produce 

toxicological findings relevant to humans. Establishing similarities between laboratory and 

field exposures provides some evidence that the in vivo studies are representative of human 

health outcomes.

4. Conclusion

Toxicity assessments and estimates of risk to develop exposure limits can generally proceed 

without exposure assessment. However risk characterization is more informed when 

exposure assessment is available. For engineered nanomaterials specifically, detailed 

exposure assessment fills a large void in relating toxicity findings to human health relevance 

from a dosimetry perspective. In conclusion, we recommend the following integrated 

approach between exposure assessment and toxicity testing especially for materials as 

diverse as engineered nanomaterials:

• Market-informed identification of potential hazards and potentially 

exposed populations.

• Initial toxicity screening to drive prioritized assessments of exposure.
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• Development of exposure assessment-informed chronic and sub-chronic in 
vivo studies.

• Conduct of exposure- and hazard-informed epidemiological studies.
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Fig. 1. 
View of the influence of knowledge-of-exposure and knowledge-of-hazard on the relevance 

and reliability of risk assessments. Adapted from the approach previously described (Hoover 

et al., 2014, 2015).
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Fig. 2. 
A framework for integrating exposure assessment and toxicity testing to design, prioritize, 

and interpret exposure- and hazard-informed epidemiological studies. PBZ=personal 

breathing zone.
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